Sometime in the eighties, I was was a salesman for a robotics company (PaR), and was looking for new gantry robot markets. I called several of the larger boat building companies, and asked if I could come and look for possible applications of this technology. One of the companies I spoke to was Searay, and a nice young guy named Rob Parmentier, agreed to meet with me. Rob was a gracious host, a good listener, and spent several hours with me, but alas, the time was perhaps too early for this technology, and no order would be forth coming. Rob, I understand, has done well with Searay, and although I don't think he would remember the several hours he spent with me, I would hope that the conversation would have at least piqued his technological curiosity. Most of the other companies, just said they weren't interested, and didn't need any automation.
A PaR gantry robot cutting a hull mold plug.
In my youth I was as a rigger on the Excalibur line at the shiny new Chris Craft plant in Bradenton Fl. The process of building a boat then, went like this. A bunch of guys in the lamination shop would be making, cleaning, prepping molds, and spraying them with gelcoat. Then out came chop guns, laying sheets of fiberglass, and using lots of little metal paint rollers to squash it all flattish. A bunch of man hours later you had a hull. When the hull was cured, jigsaws, and grinders were used to gnaw the excess fiberglass away following a line drawn by someone with a Sharpie. The same process would happen to the the top/deck structure. The deck was placed on the the hull, usually with a lot of pejorative vocabulary, pry bars and a couple of big guys jumping up and down on top of it. Eventually the two pieces were finally screwed together.
The now sort of finished deck and hull was placed on a dolly with wheels, and it was pushed onto the finishing line. The engine crew would get it first, and when they were done, everyone would stop, and push every boat on the line up one space, to the next station.
I did final rigging. That consisted of taking parts made by the wood shop, often covered with a carpet like substance that we called monkey fur, and installing them in the boat. This included bulkheads that separated the cabin from the cockpit. Sometimes the parts fit okay, sometimes they didn't, but the carpet beading stapled on the edges, made them look like they fit, in most cases.
Each boat had several molds, and none of them were identical, close mostly, but again not identical, and the halves were not exact mirror images. The mold makers were talented, but like all hand made products, there were differences between each mold for the same vessel. The end result was a lot of parts had to be modified, tweaked, or custom made, and this was a time consuming task.
I did final rigging. That consisted of taking parts made by the wood shop, often covered with a carpet like substance that we called monkey fur, and installing them in the boat. This included bulkheads that separated the cabin from the cockpit. Sometimes the parts fit okay, sometimes they didn't, but the carpet beading stapled on the edges, made them look like they fit, in most cases.
Each boat had several molds, and none of them were identical, close mostly, but again not identical, and the halves were not exact mirror images. The mold makers were talented, but like all hand made products, there were differences between each mold for the same vessel. The end result was a lot of parts had to be modified, tweaked, or custom made, and this was a time consuming task.
A PaR gantry robot waterjet trimming a fiberglass part
So, where do we stand today, with boat building technology? Things are better in many ways. CAD designed boats are becoming more common. CNC cutting systems now cut out wood, and Starboard parts. Gelcoats, epoxies, and resins have made a quantum jump in quality, and more boat builders are willing to entertain new manufacturing technologies. Good procurement, inventory management, and scheduling software is now becoming common. But sadly many boat builders still build boats like they did in the seventies.
A PanelMate CNC cutting system
In the US, cars are built, even in a bad year, (2009) at the rate of about 10 million vehicles per year, by a handful of manufacturers. The fact that you can buy a new car, for $15,000, made of thousands of parts, that will work reliably for years, is a testament to engineering, automation, and most of all volume. You need a car, but you want a boat, and although the numbers are difficult to come by, there are over 300 US based power boat builders, all competing for a bite of, and again the numbers are hard to find, about 250,000 units or so this year. No matter where you turn in this market place, you have a huge number of competitors, all chasing the same clients.
A CAD hull design by 3D Boat Design
So at this point, I am going to put on my conical hat, with stars and crescent moons on it, cast my chicken bones, and attempt to prognosticate what builders will need to survive in the coming decades.
At the very top of the list is CAD designed boats, and robotically cut hull molds. CAD based technologies allows you to iterate, and optimize designs. Robotically cut molds, assure parts fit correctly, and allow for more complex shapes to be integrated into the designs. If you don't do anything else, do this. Everything will fit better inside the boat, if the hull is precisely made. If you can't afford the equipment to do this, use a subcontractor, they are out there.
There is no point in doing the above, if you can't properly trim the parts after they leave the mold. If you know exactly what the shape of the part is, it is easy to automate the trimming process.
Since you now have precise molds, you can now use robotic spraying robots to apply mold release compounds, gelcoat, chopped glass, and other similar coatings. The robots can spray the exact amounts, at the exact thicknesses. You will gain material savings, time savings, quality, less warranty expense, and reduce personnel exposure to sometimes very nasty chemicals.
Configuration Control is critical to after sales dealer, and technician support. This is the system that keeps track of what parts, and materials that went into a particular vessel, and management of all of the engineering drawings. There is nothing worse than calling a manufacture, to get a wiring diagram, and finding out it doesn't exist, or you're trying to match a fabric, and no one knows or remembers where it came from. Wait a minute, I will walk out on the line, and see if I can find one being built, and e-mail you a picture of where the thingamabob was installed.
There are many other items that can be on the list, but these are my big four. We can add to this list environmental remediation systems, green technologies, interior component fabrication technologies, and much more.
So my summary goes like this, the more forward looking companies will prosper when the financial outlook improves, because they will be more efficient, their products will sell for less, be better quality, and more supportable as their technologies continue to improve. The companies, that are not making this investment, will falter, and fall by the wayside.
After this little discussion, I want to point out that there are some boat builders out there aggressively adopting these technologies, and notably Brunswick, Yamaha, and Stingray. Go Google these companies, and I think you will be pleasantly surprised, and when you are shopping for a boat, ask about their manufacturing technologies, and especially if they have a configuration control system.
My last thought for boat builders is that when nice some salesperson calls, and wants to tell you about a new technology, take some time to listen. He or she may have just the thing you need to give you an edge.
Configuration Control is critical to after sales dealer, and technician support. This is the system that keeps track of what parts, and materials that went into a particular vessel, and management of all of the engineering drawings. There is nothing worse than calling a manufacture, to get a wiring diagram, and finding out it doesn't exist, or you're trying to match a fabric, and no one knows or remembers where it came from. Wait a minute, I will walk out on the line, and see if I can find one being built, and e-mail you a picture of where the thingamabob was installed.
There are many other items that can be on the list, but these are my big four. We can add to this list environmental remediation systems, green technologies, interior component fabrication technologies, and much more.
So my summary goes like this, the more forward looking companies will prosper when the financial outlook improves, because they will be more efficient, their products will sell for less, be better quality, and more supportable as their technologies continue to improve. The companies, that are not making this investment, will falter, and fall by the wayside.
After this little discussion, I want to point out that there are some boat builders out there aggressively adopting these technologies, and notably Brunswick, Yamaha, and Stingray. Go Google these companies, and I think you will be pleasantly surprised, and when you are shopping for a boat, ask about their manufacturing technologies, and especially if they have a configuration control system.
My last thought for boat builders is that when nice some salesperson calls, and wants to tell you about a new technology, take some time to listen. He or she may have just the thing you need to give you an edge.
The Dodge Boat works circa early 1930's. They closed in 1936. Funny how it reminds me of a boat manufacturing line I saw a few months ago.
Most of the other companies, just said they weren't interested, and didn't need any automation.projector service toronto
ReplyDelete